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1. Introduction

A number of preposterous effects ensue when the
chromatic dispersion (CD) is rendered to be nonlinear due
to the mishandling and other physical abuses to an optical
fiber. One such disastrous consequence is that the solitons
stall while propagating for long distances through such a
fiber. This leads to the so called stationary (also known as
quiescent) solitons. These stationary solitons have been
studied for a wide variety of models in the context of
nonlinear fiber optics. They are nonlinear Schrodinger’s
equation (NLSE), Sasa—Satsuma equation, Lakshmanan—
Porsezian—Daniel equation and others [1-4, 10, 11]. In
this context, the stationary solitons with nonlinear CD for
NLSE has been studied with several forms of
nonlinearity. They are quadratic—cubic law, a couple
Kudryashov’s law and others [6, 10-20, 24-28, 30].

The current paper will study stationary solitons that
emerge from a different model, namely the complex
Ginzburg-Landau equation (CGLE) which is yet another
model governing the propel of solitons through an optical
fiber. This model has been studied in several different
contexts [5, 7-9, 21, 22, 29]. The stationary soliton
solutions were also studied in this context [8]. Now, the
stationary soliton solutions that can be retrieved from any

such nonlinear evolution equation, for nonlinear CD, are
either implicit or explicit. The application of extended trial
function approach, extended G'/G —expansion, extended
Jacobi’s elliptic function expansion reveals explicit stationary
soliton solutions [15-19, 23-26]. However, the direct
application of the software package gives implicit soliton
solutions [1-4, 10, 11]. For CGLE, the explicit stationary
soliton solutions have already been reported [26]. The current
work will address CGLE with nonlinear CD with a direct
access to the software package. Both, linear temporal
evolution and generalized temporal evolution effects are
studied. There are nine forms of nonlinear refractive index
structures that are handled. The results are detailed and
exhibited in the rest of the paper.

1.1. Governing model

The governing model is the unperturbed version of
CGLE that comes with nonlinear CD and nine forms of
nonlinear  refractive  index. ~The  phase—amplitude
decomposition of the solution hypothesis would lead to an
ordinary differential equation (ODE) that would have a
translational Lie symmetry. The reduced ODE would then be
integrated directly using the software package for all nine
nonlinear forms with linear as well as with generalized
temporal evolutions. The detailed analysis along with the
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soliton solution methodology are all presented in
subsequent sections.

2. Linear temporal evolution

The dimensionless form of CGLE with nonlinear CD
is given by

- |qx|?
iq; + a(lq"Dxx + G(lq1*)q = @ ;*

B [ZIqIZ(Iqlz)xx
4lal?a” |—{(|q|*),}*

In equation (1), the independent variables are x and
t that represents the spatial and temporal co-ordinates
respectively. The first term is the linear temporal
evolution of solitons with its coefficient being i = v—1.
The coefficient of a is the nonlinear CD. Whenn = 0, it
would lead to linear CD in which case all soliton solutions
are mobile [5, 7, 21, 29]. For non-zero n, the stationary
soliton solutions that emerge are implicit, if a software
package is implemented and explicit if an integration
algorithm, such as extended trial function approach, is
applied [26]. The functional G gives the generalized form
of the intensity—dependent nonlinear refractive index.
From the right hand side, a and g are general forms of
nonlinearities while y accounts for detuning effect. All of
the coefficients a, a, § and y are real-valued.

| +7a @

2.1. Kerr law
For Kerr law
G(lq1*) = blql? 2

so that (1) transforms to:

; |qx1?
iq: + a(lq"xx + b|Q|2q = a%

5 2123091
PIPIEPS [—{(|q|2>x}2 [+

Here in (3), b is a real-valued constant. To look for
stationary solitons, the starting substitution would be

®)

q(x,t) = p(x)e”". (4)
After inserting the hypothesis (4) into (3) gives
a(n+1)¢"2¢" — fp*¢" — ad?(¢")?

+an(n + 1)¢p™*2(¢")?
+bp® — (y + D)p* = 0. (5)

The above equation admits a single Lie point symmetry,
namely %. This symmetry will be used the integration

process. Integrating and discarding the constants of
integration, we have the following solution in terms of Gauss’
hypergeometric function

_ a¢
x—ifﬁrh, (6)
where
P = ,F;(By,Bs; By; Bg)A,
— 2F1(By, B3; Bs; Bg)As, (7
and
4
A= ¢
a(n+1)pn+2 — B2
2a-pn
y {a(n + 1™ — B} Bn
a(n+ 1)¢n ’
y+A b¢2
A, = LAz = ,
2T n+2""7 n+4
o on+ 2 . on+ 4
1= P2 — n i
_2a—pn 2
3 = Bn yDg — n;
__* —_ B
Bs = n’ Bs = a(n+1)¢pn’ (8)

and Gauss’ hypergeometric function in its generalized form
is:

qu(al, e Gp; by, by; Z)

_ v (@k-(apk z* 9
Zic=o (b (b k!’ ©

with the Pochhammer symbol being

1 n =0,

(p)”z{p(p+1)---(p+n—1) n>0. (10)
The solution given by (6) will remain valid for
PA, > 0. (11)
2.2. Power law
For power law
G(Iq1*) = blq|*™, (12)

so that (1) changes to:
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. g,
iq: + a(1q]"q)xx + blq|*™q = ;*

B [2|Q|2(|Q|2)xx
dlal?a” |={(|q|*),}?

Upon substituting the hypothesis (4) into (13) leads

] +yq. (13)

to
a(n+ 1" 3" — f¢" — ad?(¢')?
+an(n + 1)¢p"%(¢')?
+bp*™H — (y + Dp* = 0. (14)

The above equation admits a single Lie point
symmetry, namely ;—x. This symmetry will be used the

integration process. Integrating and ignoring the
constants of integration, we have the following solution
in terms of the hypergeometric function

— a¢
x = if \/E\/P_Al' (15)
where
P = ,F;(By,B;; B3; By)A,;
Bz, _1 + (1 + m)B3:
~2h ((1 +m)By; By Jas 09
and
4
A1 = ¢
a(n+1)¢pm+? — f?
2a—-pn
y {a(n + D™ — ,8} Bn
a(n+ 1)pn ’
Y + 1 3 bgp2m
2T n42""7 T 2m+ D)+
. n+2 _2a—fn
1= n y P2 = ,Bn y
—_2 -k
B; = n'B4' T am+Dp (17)

The solution given by (15) will remain valid for
PA; > 0. (18)
2.3. Parabolic (Cubic—quintic) law

For this law

G(1q1*) = kqlql* + k2 lql*, (19)
so that (1) reduces to:

|2

k1|CI|2 ) — aqu

7 n
th+a(|CI| q)xx+<+k2|q|4 q*

8 [2|Q|2(|Q|Z)xx] + (20)

saPa (g 1),

Then substituting the hypothesis (4) into (20) yields
a(n+1D@™3¢" — fp*d" — ap?(¢)?
+an(n + 1)¢p"*2(¢")?
+kyp® + k% — (v + D)p* = 0. (22)

In (19)-(21), the constants k, and k, are real-valued.
The above equation admits a single Lie point symmetry,

namely %. This symmetry will be used the integration

process. Integrating and discarding the constants of
integration, we have the following solution in terms of the
hypergeometric function

x=+] ﬁqu—/h, (22)
where
P = ,F,(By,B,; Bs; By)A,
— 2F1(By, Bs; Bs; By) Az
— 2F1 (B3, By; Bg; By)A,, (23)
and

A - a(n+ 1)¢n+?
V(B —an+ Den)?
a(n+ D" —-pB i?_fl
X{ a(n+ 1)¢n } ’

_yt+2 _qusz_ 4
Tn+273 T n4+4T

byt n+2
4 =7 b1 = )
n+6 n

2

)

2a — fin 2
B, =———,B; =

Bn

B n+4

e (24)

The solution given by (22) will remain valid for
PA; > 0. (25)
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2.4. Dual-power law _ B(n-4m-2)-2a
p By = o : (31)
For dual-power law L . . .
The solution given by (29) will remain valid for
G(ql®) = kilq|*™ + kylq|*™, 26
(Ig1*) = kilql 214l (26) PA, > 0. (32)
so that (1) shapes u
(1) shapes up 2.5. Log law
. k |q|2m |qx|2
+ n + ( 1 ) = For log law
1q: a(lql q)xx +k2|q|4m q* g
G(lq?) = bln|q/?, (33)
g [21q12(q1*)xx
4| |2 * 2 2 +yq' (27)
al?a” [={(1q]*).} so that (1) transforms to:
After plugging (4) into (27) gives rise to g, |2
iq; + a(lq|"q)xx + bglnlql* = a ——
an+ DP™3" — f*p" — ad?($') 1
n+2 "2 B 2|CI|2(|CI|2)xx]
+an(n+ D™ (@) e el RS T2 (34)
a4m+4 2m+4 __ 4 —
the¢ ki r+ " =0 (28) Then inserting (4) into (34) leads to
The above equation admits a single Lie point " " ,
o oy . a(n+ D¢ 3¢" — B ¢" — ag?(¢')?
symmetry, namely e This symmetry will be used the
integration process. Integrating and discarding the +an(n + 1)¢p™*2(¢p")?
constants of integration, we have the following solution
in terms of the hypergeometric function +2b¢p*Ing — (y + )p* = 0. (35)
x=% dé ) (29) The above equation admits a single Lie point symmetry,
- 2PAq K] ) A ) )
namely P This symmetry will be used the integration
where process. Integrating and discarding the constants of
integration, we have the following solution in terms of the
P = ,F,(1,B,; B3; By)A, hypergeometric function
— ;Fi(1, Bs; (1 + m)B3; B)A; x=+ dé . (36)

ﬁj (Xa+In($) Xy X5)Xe X (L2 X2)

+T(By) 2F (1, Bs; (1 + 2m)B3; By)A,,  (30)
where
and
4pn-2a(n+2)
¢2—n v+ 2 X1 = (l) pn

A :7"4 )
YTam+1)"" n+2 2(a—fn)

X (Bp* —a(n+ "2 o,

3 k1¢2m 3 k2¢4m
3 = y 414 — 4 a—pn
2m+n+2 n o 5 (260 D"~ ﬁ)%
_ _Amint2 o a(n+ D"
' n ’ pn—2a
B, = f(n—2)—2a x (Bp? —a(n + 1)¢p™+2) Bn
2 .Bn ' pn-2a
—P,(f—a(n+1)) An
B. = _E B, = L
3 o atnd D am+1)—-p zaﬁ_%
_B(n—-2m-2)-2a X( a(n+1) ) '

BS ﬂn )
Xs =a(n+ DPp™*?(f —a(n+1))
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(n+1)—p\
a(n — n
X( an+1) )

X (Bp? —a(n+ 1)<l>"+2)‘2?_(’l1

—a(n+ 1)P,(f—a(n+ 1))/23_‘:1

(n+2)(2a+pn)
X (Bp? —a(n+ 1)p"*?)¢p pn
(n+ )" — py T
a(n + n— n
% ( a(n + 1)p" ) ’

2(n+4) 2a
X,=(m+2)Ps¢™ n (B—an+1)r

X (Bp* —a(n+1)¢p"*?),

(n+2)2a+p(n+2))+4p
Xs=an+1)¢ pn

2(n+2)(a+2p)

_ﬁ¢ pn ,

-1

a(n+ 1) (n+ 2)2¢pn+?
X6=2b{x (8 — a(n + 1))F l , (37)

U (892 — a(n + 1))
and
Py = ,F(By, By; B3; By),
P, = ,F1(By, By; B3; ¢ ™"By),
B; —1,B; —1,Bs;
b Bs'BS‘a(n—i n /)

_ B3_1,B3_1,B5;
Pa= sk (33,83:87 )

Ps = ,F;(1,Bg; B3; By),
and also

n+2 2a — fn
— B, = B

1 n 22 ,BTl ’
2 B B
B;=——,B, = ,B;, = :
3 nt an+a’T’ T an+ 1)on
Bs _ Za—Bn’BG _ B(n—z)—za-
Bn Bn

The solution given by (36) will remain valid for

Xo+1AX.
(X + In($)X, Xs)Xe — X, (V;*#) >0. (40)
2.6. Power law
For this law
k
G(lql*) =|q%+kllqlz+kzlql4, (41)
so that (1) turns into:
ks
. —=+ kqlql?
iqe + a(lq" @) + | Tq* 7 Y
‘|'k2|Q|4
_laxl? B [2|Q|2(|Q|2)xx]
BRTERRTTr B MO N R G

And then putting the hypothesis (4) into (42) yields
a(n + 1)¢n+3¢u _ ﬁ¢3¢” + an(n + 1)¢n+2(¢1)2
—ap?(@)? + ka¢® + k19 — (v + DP* + k3 = 0. (43)

The above equation admits a single Lie point symmetry,
namely %. This symmetry will be used the integration

process. Integrating and discarding the constants of
integration, we have the following solution in terms of the
hypergeometric function

x=t[ (44)

where
P = ,Fi(By, By; Bs; By)A,
— 2F1(By, Bs; Bg; By) A3
— 2F1 (B3, By; Bg; Bu)A,
— 2F1(By, Bo; Byg; B4)As, (49)
and

A - a(n+ 1)¢pn2
VB —a(m+ DY

’

y {a(n + 1™ — ,8}!29_(:1

a(n+ 1)pn
_$0+D kgt
g n+2 7 n+4

_kquSA ks
YT n+6t T =2

n+2 2a — fn
_ B, = '8

1 n P22 ,Bn ’
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2 B a(n+ 1)¢pn—2m
By=——=Bi=—F+7>, 1= >
n a(n+1))¢ {—a(n+ Do}
n+4 4 n+6 n 2a
5 = — n ) 62_51 7 = — n ) x{a(n-l_l)(p _B}‘Bn'
a(n+ 1)
6 2-n 2
BS - _;IBQ - T!BIO - ; (46) _ (y+l)¢2m+2 _ kl
2 ) 413 — )
The solution given by (44) will remain valid for "k"'qu 2m -l;{n +2
2 3
Ay=c——"— A4;=— ,
PA, > 0. (47) YT 2mAn44"0 2m—n
2.7. Generalized anti—cubic law == + 2, , = 2a - 'Bn,
n Bn
For this law
2 B
2 k3 2m 2(m+1) Bs = _E'BA‘ - a(n+ o™
G(q1%) = iz * kalgl™ + k2lal ., (48)
2m-n 2m
so that (1) becomes Bs === Bs ="~ (53)
o+ Ky [q ™ The solution given by (51) will remain valid for
iq: + a(lq[" @ + 1 1q20+D given by
2(m+1)
thalq™" PA, > 0, (54)
2 2 2 2
—glaly B [ lql (Iqu )Zxx] + (49)
a - 4ala [={(|q]*).} 2.8. Quadratic—cubic law
Plugging the hypothesis (4) into (49) brings about For this law
a(n +1)¢"¢" = pP°d" + an(n + 1)¢™(¢")* G(1q1?) = kylql + k,lqI?, (55)
—ap?(9p')? + kpp?™H + ky P so that (1) changes to:
+hsp? 2" — (v + D" = 0. (50) kylql |G |2
iqt + a(|Q|nq)xx + <+1kq|q|2) q=a x*
The above equation admits a single Lie point 2 q
a . .
symmetry, namely —. This symmetry will be used the 21a1?(lg|?

integration process. Integrating and discarding the
constants of integration, we have the following solution
in terms of the hypergeometric function

x=4] i

Ve &

where
PA; >0,
P = PiA; — b(¢p***™ (P, A3 + P3A,) + PA5),
Py = ,F(By, By; B3; By),

= ,F(By,(m+ 1)B; —1;(m + 1)Bs; B,),
= ,F (By,(m+ 2)B; — 1;(m + 2)Bs; B,),

e
|

P, = ,F;(B, Bs; Bs; Ba), (52)

and

dala” 1—{(|q]*),}?
Then, inserting (4) into (56), one recovers

a(n+ PP — B +an(n + D™ (¢')?

—ad?(@)? + ky¢® + kid® — (v + Dp* = 0.

(57)

The above equation admits a single Lie point symmetry,

namely %. This symmetry will be used the integration

process. Integrating and discarding the constants
integration, we have the following solution in terms of
hypergeometric function

_ d¢
x==] J2A.P’

where

P = —,F,(By,B;; B3; By)A,

of
the

(58)
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F; (B, Bs; Bg; By)As
+b (21 2, Bs5; Bg; By )’ 59
¢ +2F1(BZ.B7;Bs;B4)A4 ( )
and
22
a(n+ D2 (1- L2Y"
A =— ,
! {8 —a(n+ Do}
y+4 kq ko
= ’A = ’A = 'y
242" T n+3""" n+4
B = n+2 B _Za 1B = 2
1= n Z_Bn B3 =T
_ B _ n+3 _ 3
*Tan4a 0T n ¢ 7w
+4 4
B7:_nT,BSZ_;. (60)

The solution given by (58) will remain valid for
AP > 0. (61)

2.9. Quadratic—cubic law

For this law

G(1q1*) = k1lql? + k2lq1* + k3(1q1*) . (62)

so that (1) turns into:

k1|Q|2+k2|Q|4}

iq. + a(lq|™ +{
lqt a(lql Q)xx +k3(|q|2)xx

_ a8 [21a12(1q1)
_aqq* +4|q|2q* [—{(|Q|2)x}2 ]+yq. (63)

Once substituting the hypothesis (4) into (63) leads

to
a(n -+ D™3¢" + 2ksdS9” — pp*e”
tan(n+ D™ (B2 + 2ksd*()? = a?(¢")?
+kop® + k% — (y + D)p* = 0. (64)

In (62)-(64), the constants k; for [ = 1,2,3 are all
real-valued. The above equation admits a single Lie point
symmetry, namely :—x. This symmetry will be used the
integration process. Integrating and discarding the
constants of integration, we have the following solution
in terms of the hypergeometric function

s . (65)

*= if ¢ ¢ T
\/fexp(f1 Bdf)\/fl Aexp(—zf1 Bdf)r3dr

_ _sz(szz + kl) + y + /‘{
T a(n + 1)T2 4 2katt — BT

_ §2(a—2k38?)-an(n+1)§"™*?

a(n+1)§M+342k385-pE3 (66)
The solution given by (65) will remain valid for
f1¢ Aexp(-2 flr Bd¢)t3dr > 0. (67)

3. Generalized temporal evolution

In this case, the governing model is structured as follows:

. lqx]?
i@+ a(lq]"qD e + GUq1P)q' = a —
D)
B 2|q|2(lq|2)xx] !
T g e 6
3.1. Kerr law
In the case of Kerr law, the model becomes
. 1 n .l 21 |Q.X'|2
i(q): +allql"q)xx +1q1°q" = a
D)
B 2|q|2(lq|2)xx] .
= + , 69
@) (g 177 (69)

and then employing the hypothesis (4), one obtains
a(l +m)p2m1g" — BRie” — ad?(¢)?
+a(l +n)( +n— D2 (¢p")?
+bp?*t — (y + 1) P22 = 0. (70)

The above equation admits a single Lie point symmetry,
namely %. This symmetry will be used the integration

process. Integrating and discarding the constants of
integration, we have the following solution in terms of the
hypergeometric function

x=t[ (7)
where
P = ;F,(By, B3; By; Bg)A;
— 2F1(By, B3; Bs; Bg)As, (72)
and
Pp2+?

T
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21-n+2 e LU
-2l-n+2\ B(2l+n-2)
X 1_B¢— )
a(l+n)
_y+ll _ b¢?
27 2+n" T 204042
B = 2l+n B = 20+n+2
Y7o 204n=-2"%" 20+n-2
2a — fBn 2
B?, = . a0 4 ===
BQR2l+n—-2) 2l+n-2
_ 4 _B¢—21—n+2
Bs = Zl+n—2'B6 T a@+n) (73)

The solution given by (71) will remain valid for
PA; > 0. (74)
3.2. Power law

In the case of power law, the model reads as

. lqx|?
i@ +alq* g + 1a1"™q" = a
(g9
B 2|q|2(lq|2)xx] !
g ) 7
taray gz 177 )

and then using the hypothesis (4), one gets

a(l + n)¢21+n+1¢n _ ﬁ¢3¢”
+a(l +n)(I +n— 1)+ (¢p")?
—0((1)2((1)’)2 + b¢21+2m+2 _ (]/ + l/l)(]f)ZH'Z =0. (76)

The above equation admits a single Lie point
symmetry, namely :—x. This symmetry will be used the

integration process. Integrating and discarding the
constants of integration, we have the following solution
in terms of the hypergeometric function

— d¢
x—ifﬁr,Al, (77)

where
P = 2F1(B1' B,; Bs; B4)A2
—,F(By,—1+ (1 + m)Bs; (1 + m)B;3; B,)A;, (78)

and

¢Zl+2
T

]

! 2a ﬁl
B(p 2l-n+2 ,8(214—11—2)

a(l+n)
Cy+A g™
272+ T 2(0+m) + 0
B, = — 2l+n B, = 2aa—fn ,
2l+n—-2 B2L+n—-2)
By =— 2l+2n—2’ 4= ﬁt_(:i_nr;” (79)
The solution given by (77) will remain valid for
P4, > 0. (80)
3.3. Parabolic (Cubic—quintic) law
In the case of this law, the model shapes up
@+l + (2190 gt = ailel
2 2
+4|q|qu)* 2—|{q(||q(llzq)lx})2xx] trd, 1)

and then employing the hypothesis (4), one recovers

a(l +n)¢? 1" — B — ap ()’
+a(l +n)(l +n—1)p?*(¢p")?
+k2¢2l+6 + k1¢)21+4 _ (]/ + 1/1)¢21+2 =0. (82)

The above equation admits a single Lie point symmetry,
namely %. This symmetry will be used the integration

process. Integrating and discarding the constants of
integration, we have the following solution in terms of the
hypergeometric function

2¢ (83)

where
P = ;F,(By, By; B3; BL)A;
— 2F1(By, Bs; Bg; By) A3
— 2F1(By, B7; Bg; By)Ay, (84)
and

3 ¢Zl+2
M AT - 5

2a—-pn
[g¢—21—n+2 BRlI+n-2)
X311l ———
a(l +n)

)
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v+ kg?
27240 T 2040+ 2
P _ 2+n
YT 204n+4"Y T 204n-2
2a — fn 2
BZZ—I 32_—’
BQ2l+n—2) 2l+n—-2
3 Lp2t-mt2 _ 2l+n+2
*Toall+n) T 20+n-2
B — 4 B. = 20+ n+ 4
7 204n-2""7" 2+n-2
6
Bg = — 20+n-2" (85)

The solution given by (83) will remain valid for
PA; > 0. (86)
3.4. Dual-power law

In the case of the law, the model becomes

|2

. kylql?™ ) |G
l n,l 1 1

l(q )t+a(|q| q)xx+<+k2|q|4m a(ql)*
g [21q12(1q1*)xx

4lal2(a)” 1={(Iq|*),}*

|[+va. @
and then by the hypothesis (4), one has
al + )p2m1g" — BHP” — ad?(¢)?
+a(l +n)( +n— D2 (¢p")?
thyp2tHAmAZ 4 | p2IF2MIZ _ (4 )22 = 0. (88)

The above equation admits a single Lie point
symmetry, namely ;—x. This symmetry will be used the

integration process. Integrating and discarding the
constants of integration, we have the following solution
in terms of the hypergeometric function

x=J_rfJ2‘%, (89)

where
P = ;Fi(1,By; B3; By)A,
—2F1(1, Bs; (1 + m)Bs; By) A3
+T(B,) 2Fi (1, Bg; (1 + 2m)B; By) Ay, (90)

and

B P Y+ A
YTall+n) T 2040
A - k1¢2m 3 k2¢4m
T2l 42m4n""t T 204 n =2
_ 2l+4m+n _p(n—2)-2a
Y7 20+n-2""%" BRL+n-2)
2 —2l-n+2
B3 = — ;B4 = ﬁd) ]
2l+n—-2 a(l+n)
B _B(—2m+n—2)—-2a
T BRl+n-2)
_ B(=4m+n-2)-2a
Be = B(2l+n-2) (1)
The solution given by (89) will remain valid for
AP > 0. (92)
3.5. Log law
In the case of log law, the model becomes
. 1 n .l 1 2 |Q.X'|2
(@) + allql®q)xx + bq'Inlq|* = a
(g9
B 2|q|2(lq|2)xx] !
- +vq', 93
Aar@) [-{(q22 171 3

and then utilizing the hypothesis given by (4), one achieves

al+m)p2HHig" — Bp3p" — ag?(¢')?
+a(l + ) +n — 1) (¢")?
+2bp2+2Ing — (v + 1) 2+2 = 0. (94)

The above equation admits a single Lie point symmetry,
namely %. This symmetry will be used the integration
process. Integrating and discarding the constants of

integration, we have the following solution in terms of the
hypergeometric function

a¢
T . (95)
f ﬁJX1[(X3+ln(¢)X4x5)X6_&_mﬁ]

2l+n 2l+n

where

4B(+n-1)-2a(2l+n)
L(2l4+n-2)

Xi=¢

2(a—B(l+n-1))
X (B§? — a(l + m)p?H+m)” Fetn-2)
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X, = Py B21+n-2)

2a—-pn
2(21+n) (a+B(1-1)) B¢—21—n+2 BlFn=-2)
1-=
( al + an )

pn—2a

X (Bp? - a(l +m)p2Hm)FErn-D

2a—pBn
p l % L B B2l+n-2)
- — + n— —
1( —al+n) ( al + an)

’

X5 = aPy(L + )2 (B — a(l + n))2Fn=2

2a—-pn
B BlI+n-2)
(- ara)
al + an

X (Bdp* —a(l + n)¢21+n)ﬁ

2a

—aPy(I+n)(B — a(l + n))FC@H1-2)

l+n)(2a+p(4l+n-4))

X (Bp? —a(l + n)¢21+")21+1r11-2¢ B2l+n-2)
2a—fn
ﬁ¢—2l—n+2 BQ2l+n-2)
X(1———m )
al + an
20@Lin+2)

X, =P;(2l + n)¢p 2lin-2
2a
X (B —a(l + n))s@Hn-2)

X (B? — a(l + n)p2+myaEn=z,

QlI+n)2a+pB(4l+n-2)) 4

B
Xs=a(l+n)p 2l+n-2

2(21+n) (a+B+B1)
—B¢o B2I+n-2)

2a
<2b¢—2l—n(ﬁ_a(H_n))_B(an—Z) )

2a
x(ﬁqzz—a(l+n)¢o21+n)_ﬁ(21+"‘2)
a(l+n)(2l+n)?

Xe =
and
Py = ,F,(By, By; B3; By),
P, = ,F,(By, By; Bs; 7217 "*2B),

1B n
/ 3 2l+n—2'\
n

Ps=sFy| B =55 |

B

BS; B3,B3;m

: (96)

IB e
3 204n-2’
P, = 3F, IB. — n ’
3 20+n-2’
Bs; B3, Bs; B,
Py = 2F1(1,Bei33}37): (97)
and also
2l+n 2aa—fn
Blz_ y by = )
2l+n—-2 B2L+n—-2)
2 B
By=————,B,=—,
3 204n—=2"*"a(l+n)
B. — 2a — fn _p(n—2)—-2a
T BRRI+n-2)"°" pRL+n-2)
_B¢_Zl_n+2
B7—W. (98)

The solution given by (95) will remain valid for

X {(Xs + In(9)X, X)X, — L2 — 22

2l+n 2l4+n

}> 0. (99)

3.6. Anti—cubic law

In the case of anti—cubic law, the model reads as

- . k—34+k1|q|2 Ll
l(q )t+a(|q| q )xx+ |CI| = a(ql)*
+kalql*

LB 21q17(1q1®) xx
4lal?(@)" 1={(1q|*) .}

] +vq, (100)

and then from the hypothesis (4), one reveals

a(l + n)¢21+n+1¢lr _ ﬁ¢3¢u _ a¢2(¢,)2
+a(l +n)( +n — D2 (p")? + ke
+k1¢21+4 _ (}/ + l/1)¢2l+2 + k3¢2!—2 =0. (101)

The above equation admits a single Lie point symmetry,
namely %. This symmetry will be used the integration

process. Integrating and discarding the constants of
integration, we have the following solution in terms of the
hypergeometric function

= d¢
x=1] s (102)

where
P = ,F,(By,By; Bs; By)A,

- ZFI(BZ)BS;B6;B4)A3
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- 2F1(Bz, B;; Bg; B4)A4

— 2F1(By, Bo; Byg; B4)As, (103)
and
¢21—2
A =
L7 a(l + n)gp2ln — Bgp?
2l-n+2) T
—2l-n+2\ B(21+n-2)
X 1—B¢— ,
a(l +n)
PR 0 R Ul
2 20+n 72T 2l+n+2
k,p® k
A4= 2¢ ’A5= 3 )
2l+n+4 2l+n—4
2l+n 2a — fn
Bl == ’BZ = )
2l+n—-2 BR2l+n—-2)
2 —=2l-n+2
By= - g, =
20+ n—-2 a(l+n)
B. = 2l+n+2 B — 4
ST 2l4n-2""°" 204+n-2
B. = 20+n+4 B. — 6
7T 204n-2""°" 2+n-2
_ _ 2l+n—4 _ 2
B9 - 20+n-2" 10 — —2l+n—2' (104)

The solution given by (102) will remain valid for
AP > 0. (105)
3.7. Generalized anti—cubic law

In the case of this law, the model is given by

( ks )
o ol |q|2(m+1)
l(q )t+a(|q| q )xx+ +k1|q|2m q

k+k2|Q|2(m+1)J

_ g lad? s [21a1*(q1?)xx
(@) 4lai2(@)” [={(1q|?),}?

| +va, (0e)
and then employing the hypothesis (4), one has
a(l + n)¢zl+n+1¢u _ ﬂ¢3¢” _ a¢2(¢/)2
+a(l + n)(l +n— 1)¢2l+n(¢l)2 + k2¢21+2m+4

H @I (y + )PP + keyg? I = 0. (107)

The above equation admits a single Lie point symmetry,
namely %. This symmetry will be used the integration

process. Integrating and discarding the constants of
integration, we have the following solution in terms of the
hypergeometric function

— a¢
x=t[ G

(108)

where
P =PA, - b(¢2+4m(P2A3 + P;A,) + P, As5), (109)

and
Py = ,F,(By, By; Bs; By),

P, = ,F,(B;,(m+ 1)B; — 1; (m + 1)B3; B,),

&
|

= ,F;(By,(m+ 2)B; — 1; (m + 2)B3; B,),
P, = ;F,(B;, Bs; Bs; By), (110)

and
¢2(l—m)

AT AT g =

S ol

—21-n+2)B2l+n-2)

X 1_'B¢—
a(l+n)

)

A = GFM(y + A) _ ky
2 2l+n BT+ 2m+n

_ k,¢? A = ks
T2l42m4n+2""° " 21-2m+n-2

Ay

B — 2l+n B —
YT 2l4n-2""%"

2a —fn
BRlL+n-2)

2 B ﬁ¢—21—n+2

B; = — B, =
3 20+n—=2""*" a(l+n)’

_ —2l+2m-n+2 _ 2m
Bs - ] 6 - .
2l+n-2 2l4+n-2

(111)

The solution given by (108) will remain valid for

PA, > 0. (112)

3.8. Quadratic—cubic law

In the case of this law, the model is structured as

|2

k1|‘]| 1 _ qu

+k2|q|2> BRCDE
B 21q1*(1q1*) xx 1

41q12(q})’ [_{(|Q|2)x}2 ] T

i(q")e +a(ql™g ey + <

(113)
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and then utilizing the hypothesis (4), one obtains

a(l + n)p2**1¢" — BP3p" — ap?(¢')?
+a(l +n)(I +n — 1) (¢p")?

+hop? Tt 4+ Kk p23 — (y + P2 = 0. (114)

The above equation admits a single Lie point
symmetry, namely :—x. This symmetry will be used the

integration process. Integrating and discarding the
constants of integration, we have the following solution
in terms of the hypergeometric function

- d¢
x—ifﬁ\/l_,—Al;

(115)

where
pP=- 2F1(B1,32;B3;B4)A2

2F1(Bz' Bs; Bg; B4)A3 )

+b¢ (+ 2F1(Bz, B;; Bg; B4)A4 (116)

and

2a—fBn

s fy BT
¢ {1 adF )

a(l + n)¢21+n _ B‘l)z !

ytA Ky
T2l+n" 3 T 2040+ 1

A1=

2

k,p 2l+n

A, =—2 B =
YT 204+ 270

T 2+n-2

2a — fin 2

B = = --———
2T BRl+n—-2)""" 20+n—2
ﬁ¢—21—n+2

*Toal+n) T

20+ n+1
20+ n—-2

B — 3 B — 20+n+2
57 24n-=-2"""7" 24+n-2
4

21+n-2"

By =— (117)

The solution given by (115) will remain valid for
PA; > 0. (118)

3.9. Parabolic—nonlocal law

In the case of parabolic—nonlocal law, the model
shapes up

kilql® + k2|Q|4} !

i(q")e +a(lgl™qx + {+k3(|q|2)

_laxl? s [21q12(1q1*)xx
@) 4la?(@) [={(Iq|»),}

] +vqt, (119)

and then by virtue of the hypothesis (4), one gets
a(l + n)¢zl+n+1¢rl + 2k3¢21+3¢rl

—B*¢" +all + ) +n—1)p?""(¢")?
+2ks 9?2 (9)? — ad?(9")?

bk, p2l6 + ke p21H — (¥ + NP2 = 0. (120)

The above equation admits a single Lie point symmetry,
namely %. This symmetry will be used the integration

process. Integrating and discarding the constants of
integration, we have the following solution in terms of the
hypergeometric function

x=+] ad . (121)
Vzexp([ ¢Bd§)\/f ¢pAexp(-2 [ tBd&)Ti2ldr
where
_ =bt(er? + k) +y + A
T a(l + n)T2n 4 2k, 7242 — B2’
_ & (a-2k382Y)-a(l+n-1)(+n)E2Hn
B = a(l+n)e2ltntiypp g2l+3_pe3 (122)
The solution given by (121) will remain valid for
[ ¢ Aexp(—2 [ TBd&)T'*?dr > 0. (123)

4. Conclusions

This paper recovered implicit stationary optical soliton
solutions to CGLE with nonlinear CD and having nine forms
of nonlinear refractive index change. The temporal evolutions
were taken to be both linear as well as generalized. This
software yielded overwhelming results that are displayed in
this work. The results of the paper serves a warning to the
telecommunications community that under no circumstances,
should CD be rendered to be nonlinear to avoid the stalling of
solitons and Gaussons during its propagation. These results
would be later extended to birefringent fibers for CGLE
having some of the nonlinearities. The results for birefringent
fibers would be extended versions of the current results.
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